
 ммุодろoد@obsozol

$$
\begin{aligned}
& P(x)=a_{0} \cdot x^{n}+a_{1} \cdot x^{n-1}+\cdots+a_{k} x^{n-k}+\cdots+a_{n} \cdot x^{0} \\
& \left(x^{2}-6 x+8\right) \cdot P(x)=\left(x^{2}+2 x\right) \cdot P(x-2) \\
& (x-2)(x-4) \cdot P(x)=x(x+2) \cdot P(x-2) \\
& P(x)=\frac{p((x+2)}{(x-4)} \cdot \frac{P(x-2)}{(x-2)}=\frac{P(x)}{x}=\frac{P(x-2)}{x-2} \cdot \frac{(x+2)}{(x-4)} \\
& \frac{P(x-2)}{x-2}=a_{0}(x-2)^{n-1}+a_{1}(x-2)^{n-2}+\cdots+a_{k}(x-2)+\cdots+a_{n-1}+\frac{a_{n}}{x-2} \\
& \frac{P(x)}{x}=a_{0} \cdot x^{n-1}+a_{1} \cdot x^{n-2}+\cdots+a_{k} \cdot x^{n-k-1}+\cdots+a_{n-1}+\frac{a_{n}}{x}
\end{aligned}
$$

$$
\frac{a_{n-1}=\frac{x+2}{x-4}\left(a_{0}(x-2)^{n-1}+\cdots+a_{n-2}(x-2)+\frac{a_{n}}{x-2}\right)+\frac{a_{n-1} \cdot(x+2)}{x-4}-\left(a_{0} \cdot x^{n-1}+\cdots+a_{n-2} \cdot x+\frac{a_{n}}{x}\right)}{\text { ahtal } x-2 \text { edmsesdyn }}
$$

 mnsmb. x - U $35^{n} 1$ dLLar 2 shave.

$$
\begin{aligned}
& a_{0} \cdot x^{n-1}+a_{1} \cdot x^{n+}+\cdots+a_{n-2} \cdot x+a_{n-1}+\frac{a_{n}}{x}=\frac{x+2}{x-4}\left(a_{0}(x-2)^{n-1}+\cdots+a_{n-2}(x-2)+\frac{a_{n}}{x-2}\right) \\
& +a_{n-1} \cdot \frac{x+2}{x-4}
\end{aligned}
$$

дऽるo@s № 16

26.04.2015/ $\partial \mathrm{sos/IV/7} 706$

339ヶழ๐ №
2

 ming dus nym one eng

$$
a_{r-1}=0
$$

$$
\begin{gathered}
\frac{p(x)}{x^{2}}=\frac{p(x-2)}{(x-2)} \cdot \frac{(x+2)}{x(x-4)} \\
\frac{p(x)}{x^{2}}=a_{0} \cdot x^{n-2}+a_{1} \cdot x^{n-3}+\cdots+a_{k} x^{n-k-2}+\cdots+a_{n-2}+\frac{a_{n-1}}{x}+\frac{a_{n}}{x^{2}}
\end{gathered}
$$

$$
\begin{aligned}
& P(x)=0 \cdot x^{n}+0 \cdot x^{n-1}+\cdots+0 \\
& P(x)=0
\end{aligned}
$$

Jुодпбд~ $:\left(x^{7}-6 x+3\right) \cdot P(x)=\left(x^{7}+2 x\right) P(x-2)$

$$
\left(x^{2}-6 x+8\right) \cdot 0=\left(x^{2}+2 x\right) \cdot 0 \quad 0=0
$$

 ммпәзол@оиsozol

дşo@s № 16

1

$$
R<A B<2 R \quad \& \quad 0<r<R
$$

hopzo E Eingens
 yygna.

$A B$ uh obl
$B E \& B F \quad 16,800 \Rightarrow \angle E B A=\angle F B A$

$$
\begin{aligned}
& \angle A C D=\angle A B D \text { (1trosh syhheratisn) } \\
& \angle B D A=\angle C B A(1 \text { ro3sh puyts- }- \text { ans }) \\
& r=A C=A D \Rightarrow \angle A C D=\angle A D C \\
& \angle A C D=\angle A B D \text { (1ryosh syheratinsa) }
\end{aligned}
$$

$\Rightarrow \angle A B D=\angle C B A$
$B A \operatorname{sml} \angle C B D-L$ conteptrilu

 strl $\triangle P L D-8$ Jुambings offatm ($A P=A D=A L=r$)

 мерадзпs@olsomiol
ôgg $L A$ yysthandru $\Rightarrow P Q=Q D$ a $D P \perp K L$

$$
\Rightarrow B P=B D
$$

$B E$ dojor, $B P$ dy3an $\Rightarrow B E^{2}=B C \cdot B P$

$$
\frac{B E}{B C}=\frac{B D}{B E}=B C \cdot B D
$$

JbJon: BE = BF Thaghan BE Jु3u3:5a BF-na:

$$
\frac{B E}{B C}=\frac{B D}{B F}
$$

$$
\begin{aligned}
& \text { 3ne, mos } \\
& \left.\left.\begin{array}{r}
\angle E B A=\angle F B A
\end{array}\right) \Rightarrow \begin{array}{r}
\angle E B C= \\
\angle F B D \\
\frac{B E}{B C}= \\
\angle B D \\
B F
\end{array}\right)=> \\
& \Rightarrow \triangle B E D \sim \triangle B C F \quad \triangle B E C \sim \triangle B D F \Rightarrow \angle B C E=\angle B F D \\
& \text { CeF-er BM RGB BM Sysuma } \\
& \angle B C M=180^{\circ}-\angle B C E=\angle B C M=180^{\circ}-\angle B F D \Rightarrow \angle B C M=\angle B F M \Rightarrow 1 D C B M F-3 \text { yamaly } h \\
& \angle B F M=180^{\circ}-\angle B F D=\text { of, onton hez. }
\end{aligned}
$$

 ezresma x - of $x_{p_{1}} \leq x_{p_{2}} \leq \cdots \leq x_{p_{n}}$, logos
 Eqe aby, why jhen P_{i} e P_{j} jra 26 ,al on yeml.

hogz6 x_{1} yogntions, bensen $x_{1}+x_{2}$ y yonben, they
 ebutfojgys ore. Jyjh, bet Bheerathl onbypze.

0) ay $0 \leq x_{p_{1}} \leq x_{p_{2}} \leq \ldots \leq x_{p_{n}}$ hpzsy yoxysion zonzo
eegornen, $G=\left|x_{p_{1}}+x_{p_{2}}+\cdots+x_{p_{n}}\right|=\left|x_{1}+x_{2}+\cdots+x_{n}\right|$
of era,de $\partial 6-y_{3} 6_{35}$ d ush $-\lambda_{3}$.
8) ay $x_{p_{1}} \leqslant x p_{2} \leqslant \cdots \leqslant x_{p_{n}} \leqslant 0$

$$
G=\left|x_{p_{1}}\right| \text { yondin } x \text { ac smey } 5
$$

8) oy $x_{p_{1}} \leq x p_{2} \leq \cdots \leq x_{p_{k}} \leq 0 \leq x_{p_{k+1}} \leq \cdots \leq x_{p_{n}}$

$$
G=\max \left\{\left|x_{p_{1}}\right|+\left|x_{p_{1}}+x_{p_{1}}\right|, \cdots,\left|x_{p_{1}}+x_{p_{2}}+\ldots+x_{p_{n}}\right|\right\}
$$

$\left|x_{p_{1}}\right|$-es $\left|x_{p_{1}}+x_{p_{1}}+\cdots+x_{p_{k}}\right|-D_{p}$ thigond amp ysod robpd.

 foal. Lasy andefor yadst obs the entymb.

